Abstract
We present stochastic consensus and convergence of the discrete consensus-based optimization (CBO) algorithm with random batch interactions and heterogeneous external noises. Despite the wide applications and successful performance in many practical simulations, the convergence of the discrete CBO algorithm was not rigorously investigated in such a generality. In this work, we introduce a generalized discrete CBO algorithm with a weighted representative point and random batch interactions, and show that the proposed discrete CBO algorithm exhibits stochastic consensus and convergence toward the common equilibrium state exponentially fast under suitable assumptions on system parameters. For this, we recast the given CBO algorithm with random batch interactions as a discrete consensus model with a random switching network topology, and then we use the mixing property of interactions over sufficiently long time interval to derive stochastic consensus and convergence estimates in mean square and almost sure senses. Our proposed analysis significantly improves earlier works on the convergence analysis of CBO models with full batch interactions and homogeneous external noises.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Models and Methods in Applied Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.