Abstract

We consider performing simulation experiments in the presence of covariates. Here, covariates refer to some input information other than system designs to the simulation model that can also affect the system performance. To make decisions, decision makers need to know the covariate values of the problem. Traditionally in simulation-based decision making, simulation samples are collected after the covariate values are known; in contrast, as a new framework, simulation with covariates starts the simulation before the covariate values are revealed and collects samples on covariate values that might appear later. Then, when the covariate values are revealed, the collected simulation samples are directly used to predict the desired results. This framework significantly reduces the decision time compared with the traditional way of simulation. In this paper, we follow this framework and suppose there are a finite number of system designs. We adopt the metamodel of stochastic kriging (SK) and use it to predict the system performance of each design and the best design. The goal is to study how fast the prediction errors diminish with the number of covariate points sampled. This is a fundamental problem in simulation with covariates and helps quantify the relationship between the offline simulation efforts and the online prediction accuracy. Particularly, we adopt measures of the maximal integrated mean squared error (IMSE) and integrated probability of false selection (IPFS) for assessing errors of the system performance and the best design predictions. Then, we establish convergence rates for the two measures under mild conditions. Last, these convergence behaviors are illustrated numerically using test examples. History: Accepted by Bruno Tuffin, area editor for simulation. Funding: This work was supported in part by Singapore Ministry of Education Academic Research Funds [Tier 1 Grants R-155-000-201-114 and A-0004822-00-00], the City University of Hong Kong [Grants 7005269 and 7005568], and the National Natural Science Foundation of China [Grant 72091211]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.1263 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2021.0329 ) at ( http://dx.doi.org/10.5281/zenodo.7344997 ).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.