Abstract
A solution of two-stage stochastic generalized equations is a pair: a first stage solution which is independent of realization of the random data and a second stage solution which is a function of random variables.This paper studies convergence of the sample average approximation of two-stage stochastic nonlinear generalized equations. In particular an exponential rate of the convergence is shown by using the perturbed partial linearization of functions. Moreover, sufficient conditions for the existence, uniqueness, continuity and regularity of solutions of two-stage stochastic generalized equations are presented under an assumption of monotonicity of the involved functions. These theoretical results are given without assuming relatively complete recourse, and are illustrated by two-stage stochastic non-cooperative games of two players.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.