Abstract
The paper examines an algorithm for finding approximate sparse solutions of convex cardinality constrained optimization problem in Hilbert spaces. The proposed algorithm uses the penalty decomposition (PD) approach and solves sub-problems on each iteration approximately. We examine the convergence of the algorithm to a stationary point satisfying necessary optimality conditions. Unlike other similar works, this paper discusses the properties of PD algorithms in infinite-dimensional (Hilbert) space. The results showed that the convergence property obtained in previous works for cardinality constrained optimization in Euclidean space also holds for infinite-dimensional (Hilbert) space. Moreover, in this paper we established a similar result for convex optimization problems with cardinality constraint with respect to a dictionary (not necessarily the basis).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.