Abstract

Recently, variants of shift-splitting iteration method have been proposed for solving singular saddle-point problems. However, these methods can only be proved to converge to one of the solutions of the consistent singular linear system, not knowing any further information about this solution. In this work, we consider a modified preconditioned generalized shift-splitting (MPGSS) iteration method for solving both consistent and inconsistent singular saddle-point problems. This method is proved to converge to the best least squares solution. Moreover, based on the iteration form, a preconditioner is obtained to accelerate Krylov subspace methods. Theoretical analysis shows that the preconditioned GMRES method also converges to the best least squares solution of the consistent singular saddle-point problem. In addition, numerical results are presented to show the effectiveness and robustness of the proposed iteration method and preconditioner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.