Abstract

This paper proves convergence of a sample-path based stochastic gradient-descent algorithm for optimizing expected-value performance measures in discrete event systems. The algorithm uses increasing precision at successive iterations, and it moves against the direction of a generalized gradient of the computed sample performance function. Two convergence results are established: one, for the case where the expected-value function is continuously differentiable; and the other, when that function is nondifferentiable but the sample performance functions are convex. The proofs are based on a version of the uniform law of large numbers which is provable for many discrete event systems where infinitesimal perturbation analysis is known to be strongly consistent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.