Abstract

In this paper, we propose a projection based Newton-type algorithm for solving the variational inequality problems. A comprehensive study is conducted to analyze both global and local convergence properties of the algorithm. In particular, the algorithm is shown to be of superlinear convergence when the solution is a regular point. In addition, when the Jacobian matrix of the underlying function is positive definite at the solution or the solution is a non-degenerate point, the algorithm still possesses its superlinear convergence. Compared to the relevant projection algorithms in literature, the proposed algorithm is of remarkable advantages in terms of its generalization and favorable convergence properties under relaxed assumptions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.