Abstract

<abstract> Consider a generalized Sylvester-transpose matrix equation with rectangular coefficient matrices. Based on gradients and hierarchical identification principle, we derive an iterative algorithm to produce a sequence of approximated solutions with a reasonable stopping rule concerning a relative norm-error. A convergence analysis via Banach fixed-point theorem reveals the sequence converges to a unique solution of the matrix equation for any given initial matrix if and only if the convergence factor is chosen appropriately in a certain range. The performance of algorithm is theoretically analysed through the convergence rate and error estimations. The optimal convergence factor is chosen to attain the fastest asymptotic behaviour. Finally, numerical experiments are provided to illustrate the capability and efficiency of the proposed algorithm, compared to recent gradient-based iterative algorithms. </abstract>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.