Abstract
This article aims to define a new resolvent operator for variational inclusion problems in the framework of Banach spaces. We design a rapid algorithm using the resolvent operator to approximate the solution of the variational inclusion problem in Banach spaces. Additionally, we show that the algorithm articulated in this article converges faster than the well-known and notable algorithm due to Fang and Huang. To show the superiority and prevalence of the obtained results, we propound a numerical and computational example upholding our claim. Lastly, a minimization problem is solved with the help of the proposed algorithm, which is the first attempt in the current context of the study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Facta Universitatis, Series: Mathematics and Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.