Abstract

AbstractWe consider the second order nonlinear ordinary differential equation u″ (t) = u1+α (α > 0) with positive initial data u(0) = a0, u′(0) = a1, whose solution becomes unbounded in a finite time T. The finite time T is called the blow-up time. Since finite difference schemes with uniform meshes can not reproduce such a phenomenon well, adaptively-defined grids are applied. Convergence with mesh sizes of certain smallness has been considered before. However, more iterations are required to obtain an approximate blow-up time if smaller meshes are applied. As a consequence, we consider in this paper a finite difference scheme with a rather larger grid size and show the convergence of the numerical solution and the numerical blow-up time. Application to the nonlinear wave equation is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.