Abstract

The iterative solution of systems of equations arising from systems of hyperbolic, time-independent partial differential equations (PDEs) is studied. The PDEs are discretized using a finite volume or finite difference approximation on a structured grid. A convergence acceleration technique where a semicirculant approximation of the spatial difference operator is employed as preconditioner is considered. The spectrum of the preconditioned coefficient matrix is analyzed for a model problem. It is shown that, asymptotically, the time step for the forward Euler method could be chosen as a constant, which is independent of the number of grid points and the artificial viscosity parameter. By linearizing the Euler equations around an approximate solution, a system of linear PDEs with variable coefficients is formed. When utilizing the semicirculant (SC) preconditioner for this problem, which has properties very similar to the full nonlinear equations, numerical experiments show that the favorable convergence properties hold also here. We compare the results for the SC method to those of a multigrid (MG) scheme. The number of iterations and the arithmetic complexities are considered, and it is clear that the SC method is more efficient for the problems studied. Also, the MG scheme is sensitive to the amount of artificial dissipation added, while the SC method is not.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call