Abstract

Future passive optical networks will require simultaneous provision of wired and wireless services to provide high-capacity and high-speed information access network to overcome the capacity demand. In this paper, a converged fiber-wireless (FiWi) network architecture including an orthogonal frequency division multiplexing passive optical network (OFDM-PON) and a radio over fiber (RoF) system is proposed. Two multiple-input multiple-output radio over fiber channels are inserted into the left and right side of OFDM-PON spectrum, using a single-sideband frequency translation (SSB-FT) technique. The significant merit of the proposed architecture is its high spectral efficiency as the two multiple-input multiple-output radio over fiber channels and OFDM-PON transmit at the same frequency, which reduces the complexity of transceiver design by applying a novel method for the implementation of local oscillators in both transmitter and receiver. A proof-of-concept downstream link over 20 km standard-PON was conducted by simulation to demonstrate the performance of the proposed converged fiber-wireless network architecture and the link performance was assessed using error vector magnitude and bit error rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call