Abstract

There are mainly two complementary imaging modes in transmission electron microscopy (TEM): Conventional TEM (CTEM) and scanning TEM (STEM). In the CTEM mode the specimen is illuminated with a plane electron wave, and the direct image formed by the objective lens is recorded in the image plane. STEM is based on scanning the specimen surface with a focused electron beam and collecting scattered electrons with an extended disk or ring-shaped detector. Here we show that combination of CTEM imaging with STEM illumination generally allows extending the point resolution of CTEM imaging beyond the diffraction limit. This new imaging mode improves imaging characteristics, is more robust against chromatic aberration, exhibits direct structural imaging with superior precision, visualizes light elements with excellent contrast, and even allows us to overcome the conventional information limit of a microscope.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.