Abstract

The present volume consists of a collection of papers originally presented at the conference Conventional Principles in Science, held at the University of Bristol, August 2011, which featured contributions on the history and contemporary development of the notion of ‘relativized a priori’ principles in science, from Henri Poincare’s conventionalism to Michael Friedman’s contemporary defence of the relativized a priori. In Science and Hypothesis, Poincare assessed the problematic epistemic status of Euclidean geometry and Newton’s laws of motion, famously arguing that each has the status of ‘convention’ in that their justification is neither analytic nor empirical in nature. In The Theory of Relativity and A Priori Knowledge, Hans Reichenbach, in light of the general theory of relativity, proposed an updated notion of the Kantian synthetic a priori to account for the dynamic inter-theoretic status of geometry and other non-empirical physical principles. Reichenbach noted that one may reject the ‘necessarily true’ aspect of the synthetic a priori whilst preserving the feature of being constitutive of the object of knowledge. Such constitutive principles are theory-relative, as illustrated by the privileged role of nonEuclidean geometry in general relativity theory. This idea of relativized a priori principles in spacetime physics has been analysed and developed at great length in the modern literature in the work of Michael Friedman, in particular the roles played by the light postulate and the equivalence principle – in special and general relativity respectively – in defining the central terms of their respective theories and connecting the abstract mathematical formalism of the theories with their empirical content. The papers in this volume guide the reader through the historical development of conventional and constitutive principles in science, from the foundational work of Poincare, Reichenbach and others, to contemporary issues and applications of the relativized a priori concerning the notion of measurement, physical possibility, and the interpretation of scientific theories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.