Abstract
Detailed understanding of the monomer distribution in copolymers is essential to tailor their properties. For the first time, we have been able to utilize in situ 1H NMR spectroscopy to monitor the monomer-activated anionic ring opening copolymerization (AROP) of ethylene oxide (EO) with a glycidyl ether comonomer, namely, ethoxy ethyl glycidyl ether (EEGE). We determine reactivity ratios and draw a direct comparison to conventional oxyanionic ROP. Surprisingly, the respective monomer reactivities differ strongly between the different types of AROP. Under conventional oxyanionic conditions similar monomer reactivities of EO and EEGE are observed, leading to random structures (rEO = 1.05 ± 0.02, rEEGE = 0.94 ± 0.02). Addition of a cation complexing agent (18-crown-6) showed no influence on the relative reactivity of EO and EEGE (rEO = rEEGE = 1.00 ± 0.02). In striking contrast, monomer-activated AROP produces very different monomer reactivities, affording strongly tapered copolymer structures (rEO = 8.00 ± 0.16, rEEGE = 0.125 ± 0.003). These results highlight the importance of understanding reactivity ratios of comonomer pairs under certain polymerization conditions, at the same time demonstrating the ability to generate both random and strongly tapered P(EO-co-EEGE) polyethers by simple one-pot statistical anionic copolymerization. These observations may be generally valid for the copolymerization of EO and glycidyl ethers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.