Abstract

Intracellular trafficking events powered by microtubule-based molecular motors facilitate the targeted delivery of selected molecular components to specific neuronal subdomains. Within this context, we provide a brief review of mechanisms underlying the execution of axonal transport (AT) by conventional kinesin, the most abundant kinesin-related motor protein in the mature nervous system. We emphasize the biochemical heterogeneity of this multi-subunit motor protein, further discussing its significance in light of recent discoveries revealing its regulation by various protein kinases. In addition, we raise issues relevant to the mode of conventional kinesin attachment to cargoes and examine recent evidence linking alterations in conventional kinesin phosphorylation to the pathogenesis of adult-onset neurodegenerative diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call