Abstract

This study addressed the anticonvulsant effects of phenobarbital, valproate, and ethosuximide in the amygdala of kindled guinea pigs to further validate this model for the screening of anticonvulsant drugs. Behavioral toxic effects were assessed at 30 min following drug administration using quantitative locomotor tests, as well as scores on a sedation and muscle relaxation rating index. The anticonvulsant efficacy of the drugs were evaluated from measurements of afterdischarge threshold (ADT), afterdischarge duration (ADD), and behavioral seizure severity (SS) during early and late phases of kindling acquisition, and in kindled guinea pigs. ADD and SS were also measured in response to both threshold and suprathreshold kindling stimulation. All drugs exerted slight to moderate sedative effects in guinea pigs on both the behavioral tests and rating index. We found that phenobarbital exhibited effective anticonvulsant properties in guinea pigs by consistently reducing ADD and SS in response to both threshold and suprathreshold kindling stimulation. Valproate exhibited effective anticonvulsant properties at threshold stimulation and less effective properties at suprathreshold stimulation. Lastly, we found that ethosuximide lacked effective anticonvulsant action at either threshold or suprathreshold kindling stimulation. Our results indicate that the guinea pig kindling model correctly predicted the actions of phenobarbital, valproate, and ethosuximide in the treatment of partial seizures. Guinea pig amygdala kindling appears to serve as a useful and valid model for partial epilepsy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.