Abstract

AbstractA large variety of catalytic systems have been studied for the catalytic wet air oxidation of phenolic solutions. Most of them show good activity, but serious stability problems. In this contribution, stability studies were performed over CuO/Al2O3 conventional (CNT) and polytetrafluorethylene coated (C3T) catalysts used for the oxidation of 5 g L−1 phenol solutions in a trickle bed reactor (140 °C and 7 atm of oxygen pressure). For the hydrophilic catalyst, phenol conversion decreased with usage due to the formation of Cu2O and copper oxalate phases. For the wet proofed catalyst, the hydrophobic layer prevented the appearence of those phases, and conversion levels remained practically constant with reaction time. After usage, both catalysts were oxidized at 400 °C and tested for reaction: in the case of the C3T catalyst, the phenol conversion was increased over its initial level; for CNT catalyst, the phenol conversion was also increased, but initial levels were not completely restored. The deactivation mechanism of the CNT catalyst is associated with the formation of the Cu2O and copper oxalate phases during reaction. For catalyst C3T, practically no deactivation was observed. Copyright © 2007 Society of Chemical Industry

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.