Abstract
Sociologists are often confronted with a discrepancy between the level of measurement required by the linear statistical model and that characteristic of most variables of sociological interest. This problem is typically resolved by the use of conventional scores which assign equal interval scores to the categories of ordinal variables subject only to a monotonicity constraint. Alternatively, it is often possible to obtain optimal interval scores which maximize the average interitem correlation within a set of variables. However, since optimal scores can be seen as simply nonlinear transformations of conventional scores, these optimal scores can increase the correlations between the variables only to the extent that the conventional scores yield nonlinear relationships among the variables. Therefore, it is possible to assess the optimality of conventional scores for a particular set of variables by comparing the squared correlation coefficients with the monotonic correlation ratios for those variables. Differences between the correlation coefficients obtained from conventional and optimal scores are limited, even in the presence of nonlinear relationships among the conventionally scored variables, by the "quasi-invariance" property of the correlation coefficient under nonlinear transformations of the variables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.