Abstract
Tea waste powder (TWP) is one of the potential biomass waste to recover valuable chemicals and materials. The prime objective of this work is to investigate the role of acid pretreatment on TWP. Diluted acids (HCl, H3PO4, CH3COOH, and H2SO4) were used to soak the TWP to understand the role of acids on bond cleavage and chemicals formation. One gram of TWP was soaked in 100 mL of diluted acids for 24 h. The soaked samples were further subjected to a hot air oven (temperature: 80 °C, duration: 6 h), orbital shaking (shaking speed: 80-100 rpm, duration: 6 h), and microwave irradiation (microwave power: 100 W, duration: 10 min) to understand the synergistic effects of acids and mode of exposure. The pretreated solid samples and liquid samples were analyzed using FTIR to understand the presence of functional groups. The mass loss of TWP after treatment significantly varied with the type of acid and exposure mode used. In the orbital shaker, the mass loss was varied in the following order: H2SO4 (36%) > CH3COOH (32%) > H3PO4 (22%) > HCl (15%). In hot air oven, high mass loss was observed compared to orbital shaking [HCl (48%) > CH3COOH (37%) > H2SO4 (35%) > H3PO4 (33%)]. The mass loss in microwave irradiation is lower (19 to 25%) with all acids compared to orbital shaking. In the solid samples, O-H stretching, C-H stretching, C=O stretching, C=C stretching, -C-O-, and -C-OH- functional groups were noticed. Similarly, C=O and C=C peaks and C-O and -C-OH peaks were noticed in liquid samples. Interestingly, microwave irradiation showed promising results in 10 min of pretreatment, whereas orbital shaking and hot air oven pretreatments require 6 h to achieve the same result.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.