Abstract

To test the null hypothesis that when the equivalent total light energy is irradiated to three orthodontic adhesive resins, there is no difference between the microhardness and water sorption values regardless of the curing light sources. Samples were divided into six groups according to the combination of three orthodontic adhesives (Kurasper F, Light-Bond, Transbond XT) and two light intensities (quartz tungsten halogen [QTH] and high intensity quartz tungsten halogen [HQTH]). One half of each of the 40 samples of three adhesive pastes was polymerized for 20 seconds by a QTH light source, and the other half was polymerized for 10 seconds by a HQTH light source. Water sorption was determined and Vickers hardness was established with three measurements per sample at the top, center, and bottom. Statistical analysis was performed using two-way analysis of variance (ANOVA) with multiple comparisons (Tukey-HSD). Statistically significant differences were found among all adhesives for water sorption and hardness values cured with QTH and HQTH. The HQTH curing unit resulted in higher values than did the QTH. The highest water sorption values were observed for Kurasper F cured with HQTH and the lowest value was observed for Transbond XT cured with QTH. For microhardness Light-Bond cured with HQTH produced the highest values, and Transbond XT cured with QTH produced the lowest. When the equivalent total light energy is irradiated to three orthodontic adhesive resins, there are significant differences between the microhardness and water sorption values cured with the QTH and HQTH light source. The null hypothesis is rejected.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call