Abstract

In the present work, conventional and enhanced exergy analyses were applied to the cryogenic liquefaction process of hydrogen gas. The hydrogen liquefaction unit consists of a multi-stage compressor, booster compressor-turbine pair, and heat exchanger block. Convectional exergy analysis cannot identify parts of exergy inefficiencies. In addition, by convectional exergy analysis, it cannot determine inevitable exergy losses that occur due to technological limits. For this reason, enhanced exergy analysis should be applied to the system. The exergy destruction affecting the exergy efficiency of the hydrogen liquefaction unit was investigated in detail. This study suggests an enhanced exergy analysis of a cryogenic liquefaction system. According to the results of the convectional exergy analysis, exergy efficiency of the whole liquefaction process are 32.22%. Also, the highest and lowest endogenous exergy destruction among whole components is calculated as 9563 kW and 92.83 kW in the turbine and CM-1, respectively. With these calculated results, the potential for improvement in the turbine in the liquefaction system was found to be high.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.