Abstract

The understanding of the thermal stability of magnesium carbonates and the relative metastability of hydrous carbonates including hydromagnesite, artinite, nesquehonite, barringtonite and lansfordite is extremely important to the sequestration process for the removal of atmospheric CO2. The conventional thermal analysis of synthetic nesquehonite proves that dehydration takes place in two steps at 157, 179 degrees Celsius and decarbonation at 416 degrees Celsius and 487 degrees Celsius. Controlled rate thermal analysis shows the first dehydration step is isothermal and the second quasi-isothermal at 108 and 145 degrees Celsius. In the CRTA experiment carbon dioxide is evolved at 376 degrees Celsius. CRTA technology offers better resolution and a more detailed interpretation of the decomposition processes of magnesium carbonates such as nesquehonite via approaching equilibrium conditions of decomposition through the elimination of the slow transfer of heat to the sample as a controlling parameter on the process of decomposition. Constant-rate decomposition processes of non-isothermal nature reveal partial collapse of the nesquehonite structure

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.