Abstract

This study employs both the traditional and the complex modal analyses of a detailed finite element model of human head–neck system to determine modal responses in terms of resonant frequencies and mode shapes. It compares both modal responses without ignoring mode shapes, and these results are reasonably in agreement with the literature. Increasing displacement contour loops within the brain in higher frequency modes probably exhibits the shearing and twisting modes of the brain. Additional and rarely reported modal responses such as ‘mastication’ mode of the mandible and flipping mode of nasal lateral cartilages are identified. This suggests a need for detailed modelling to identify all the additional frequencies of each individual part. Moreover, it is found that a damping factor of above 0.2 has amplifying effect in reducing higher frequency modes, while a diminishing effect in lowering peak biomechanical responses, indicating the importance of identifying the appropriate optimised damping factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.