Abstract

TiO2 nanotube arrays with an inner average pore diameter of 83 nm and a length of 14 μm are grown on Ti foils by electrochemical anodization in ammonium fluoride–water–glycerol solution. ZnO is introduced into the TiO2 nanotube arrays by a convenient electrodeposition technique. ZnO/TiO2 nanocomposites supported on Ti substrate are used as the photo-anode electrode for dye-sensitized solar cells (DSSCs). The morphology, structure and electrochemical properties are investigated using field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, UV–vis diffusion reflection spectroscopy, X-ray photoelectron spectroscopy and cyclic voltammetry measurements. It is found that ZnO have been embedded in the TiO2 nanotube arrays, and changed some photoelectric properties. The conversion efficiency of the dye-sensitized solar cells is more than doubled, compared with that of bare TiO2 nanotube arrays with deposited 60 min. This improvement comes from the synergetic effect between ZnO and TiO2, which increases dye absorption, electron transport and electron lifetime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.