Abstract

Access to glycopeptides with C-terminal thioester functionality is essential for the synthesis of large glycopeptides and glycoproteins through the use of native chemical ligation. Toward that end, we have developed a concise method for the synthesis of a glycopeptide thioester having an intact complex-type dibranched disialyl-oligosaccharide. The synthesis employed a coupling reaction between benzylthiol and a free carboxylic acid at the C-terminus of a glycopeptide in which the peptide side chains are protected. After construction of glycopeptide on the HMPB-PEGA resin through the Fmoc-strategy, the protected glycopeptide was released upon treatment with acetic acid/trifluoroethanol and then the C-terminal carboxylic acid was coupled with benzylthiol at −20 °C in DMF. For this coupling, PyBOP/DIPEA was found to be the best for the formation of the thioester, while avoiding racemization. Finally, the protecting groups were removed in good yield with 95% TFA, thus affording a glycopeptide-thioester having an intact and homogeneous complex-type disialyl-oligosaccharide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.