Abstract

Lower tropospheric water vapor measurements are performed at nighttime using the mobile atmosphere monitoring lidar-2 (AML-2) which is operated by the Anhui Institute of Optics and Fine Mechanics. In this lidar system, a 354.7-nm light from a Nd:YAG laser is used as stimulating source, whose Raman shifted center wavelengths are at 386.7 and 407.5 nm for nitrogen and water vapor, respectively. We present a novel and convenient method for determining the Raman lidar calibration constant according to the scanning performance of this lidar. We are likewise able to realize the measurement of water vapor profile in the low troposphere. The error induced by the uncertainty of calibrated constants is within 7% for the Raman lidar system. Experimental results from two months of study indicate that the method of calibrating the lidar system constant is feasible, and the Raman lidar performance is stable and reliable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.