Abstract

The convective-to-absolute instability transition in an Oldroyd-B capillary jet subject to unrelaxed axial stress is examined theoretically. There is a critical Weber number below which the jet is absolutely unstable under axisymmetric perturbations. We analyze the dependence of this critical parameter with respect to the Reynolds and Deborah numbers, as well as the unrelaxed axial stress. For small Deborah numbers, the unrelaxed stress destabilizes the viscoelastic jet, increasing the critical Weber number for which the convective-to-absolute instability transition takes place. If the Deborah number takes higher values, then the transitional Weber number decreases as the unrelaxed stress increases until two solution branches cross each other. The dominant branch for large axial stress leads to a threshold of this quantity above which the viscoelastic jet becomes absolutely unstable independently of the Weber number. The threshold depends on neither the Reynolds nor the Deborah number for sufficiently large values of these parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call