Abstract

The convective stability of quasi-equilibriumof a fluid layer formed by two horizontal coaxial cylindrical surfaces which have different temperatures and rotate at the same angular velocity about the axis of symmetry is investigated theoretically and experimentally. Consideration is carried out from the standpoint of thermal vibrational convection caused by the average lifting force generated as a result of vibrations of a nonisothermal fluid with respect to the cavity. The vibrations are induced by an external field. The action of the centrifugal force field is also taken into account. Stability of mechanical quasi-equilibrium with respect to monotonic plane perturbations, which are, as shown experimentally, the most dangerous, is studied within the framework of the linear analysis. The stability boundaries are constructed for layers of various relative thickness in the plane of control parameters, the centrifugal and vibrational Rayleigh numbers. The thresholds of excitation of two-dimensional convective structures obtained experimentally are in good agreement with the theoretical ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.