Abstract

Context. Rotation is thought to influence the size of convective eddies and the efficiency of convective energy transport in the deep convection zones of stars. Rotationally constrained convection has been invoked to explain the lack of large-scale power in observations of solar flows. Aims. Our main aims are to quantify the effects of rotation on the scale of convective eddies and velocity as well as the depths of convective overshoot and subadiabatic Deardorff layers. Methods. We ran moderately turbulent three-dimensional hydrodynamic simulations of rotating convection in local Cartesian domains. The rotation rate and luminosity of the simulations were varied in order to probe the dependency of the results on Coriolis, Mach, and Richardson numbers measuring the influences of rotation, compressibility, and stiffness of the radiative layer. The results were compared with theoretical scaling results that assume a balance between Coriolis, inertial, and buoyancy (Archimedean) forces, also referred to as the CIA balance. Results. The horizontal scale of convective eddies decreases as rotation increases, and it ultimately reaches a rotationally constrained regime consistent with the CIA balance. Using a new measure of the rotational influence on the system, we found that even the deep parts of the solar convection zone are not in the rotationally constrained regime. The simulations captured the slowly and rapidly rotating scaling laws predicted by theory, and the Sun appears to be in between these two regimes. Both the overshooting depth and the extent of the Deardorff layer decrease as rotation becomes more rapid. For sufficiently rapid rotation, the Deardorff layer is absent due to the symmetrisation of upflows and downflows. However, for the most rapidly rotating cases, the overshooting increases again due to unrealistically large Richardson numbers that allow convective columns to penetrate deep into the radiative layer. Conclusions. Relating the simulations with the Sun suggests that the convective scale, even in the deep parts of the Sun, is only mildly affected by rotation and that some other mechanism is needed to explain the lack of strong large-scale flows in the Sun. Taking the current results at face value, the overshoot and Deardorff layers are estimated to span roughly 5% of the pressure scale height at the base of the convection zone in the Sun.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call