Abstract
The vertical throughflow with viscous dissipation in a horizontal porous layer is studied. The horizontal plane boundaries are assumed to be isothermal with unequal temperatures and bottom heating. A basic stationary solution of the governing equations with a uniform vertical velocity field (throughflow) is determined. The temperature field in the basic solution depends only on the vertical coordinate. Departures from the linear heat conduction profile are displayed by the temperature distribution due to the forced convection effect and to the viscous dissipation effect. A linear stability analysis of the basic solution is carried out in order to determine the conditions for the onset of convective rolls. The critical values of the wave number and of the Darcy–Rayleigh number are determined numerically by the fourth-order Runge–Kutta method. It is shown that, although generally weak, the effect of viscous dissipation yields an increase of the critical value of the Darcy–Rayleigh number for downward throughflow and a decrease in the case of upward throughflow. Finally, the limiting case of a vanishing boundary temperature difference is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.