Abstract

The primary instability of axisymmetric steady thermocapillary flow in a cylindrical liquid bridge with non-deformable free surface is calculated by a mixed Chebychev-finite difference method. For unit aspect ratio the most dangerous mode has an azimuthal wavenumber m=2. The physical instability mechanisms are studied by analyzing the linear energy balance of the neutral mode. If the Prandtl number is small (Pr≪1), the bifurcation is stationary. The associated neutral mode is amplified in the shear layer close to the free surface. For large Prandtl number (Pr=4), the basic state becomes linearly unstable to a pair of hydrothermal waves propagating nearly azimuthally. Both mechanisms are compared with those previously proposed in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.