Abstract

A closed form solution to the convective instability in a composite system of fluid and porous layers with vertical throughflow is presented. The boundaries are considered to be rigid-permeable and insulating to temperature perturbations. Flow in the porous layer is governed by Darcy–Forchheimer equation and the Beavers–Joseph condition is applied at the interface between the fluid and the porous layer. In contrast to the single-layer system, it is found that destabilization due to throughflow arises, and the ratio of fluid layer thickness to porous layer thickness, ζ, too, plays a crucial role in deciding the stability of the system depending on the Prandtl number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.