Abstract

Steady-state experiments with one-dimensional and two-dimensional calorimeters were used to study the convective heat transfer near sharp steps in wall temperature in a turbulent boundary layer. Data acquired under low and high freestream turbulence conditions indicated that spanwise turbulent diffusion is not a significant heat transport mechanism for a two-dimensional temperature step. The one-dimensional calorimeter heat transfer data were predicted within ±5 percent using the STAN7 boundary layer code for situations with an abrupt wall temperature step. The conventional correlation with an unheated starting length correction, in contrast, greatly under-predicts the heat transfer for the same experimental cases. A new correlation was developed that is in good agreement with near and far-field semi-analytical solutions and predicts the calorimeter heat transfer data to within ±2 percent for temperature step boundary condition cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.