Abstract

The rates of heat transfer for flow through a periodic array of wavy passages are studied with an accurate numerical scheme. The flow was observed to be steady until Re around 180 after which self-sustained oscillatory flow was observed. The self-sustained oscillations lead to the destabilization of laminar thermal boundary layers, replenish the near-wall fluid with the fluid in the core region, and thus provide a natural mechanism of heat and mass transfer enhancement. In the steady-flow regime, the average Nusselt numbers for the wavy wall channel were only slightly larger than those for a parallel-plate channel. On the other hand, in the transitional-flow regime, the enhancement of heat transfer was about a factor of 2.5. Friction factors for the wavy channel were about twice those for the parallel-plate channel in the steady-flow region, and remained almost constant in the transitional regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.