Abstract

Domed skylights are important architectural design elements that deliver daylight and solar heat into buildings, and connect the building's occupants to the outdoor environment. Despite the widespread use of domed skylights, there is limited information on the convective heat transfer within cavities of multi-glazed domes. This information is required to evaluate the thermal performance of domed skylights for product rating purposes, or to evaluate the heat loss or gain of installed skylights in buildings. This article presents a numerical study on the laminar natural convection in horizontal concentric domed cavities heated from the inside surface. A commercial CFD package is used to solve for the flow and temperature fields. The results show that for large cavity gap spacing-to-radius ratios, the cavity flow is mono-cellular and steady state. For small gap spacing ratios, however, the cavity flow may be multi-cellular and transient periodic. Practical correlations for the heat transfer coefficient as a function of the cavity shape and gap spacing ratio are developed for both flow regimes. The critical gap spacing ratio that yields the maximum Nusselt number is quantified for each cavity shape.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.