Abstract

Heat transfer characteristics to laminar pulsating pipe flow under different conditions of Reynolds number and pulsation frequency were experimentally investigated. The tube wall of uniform heat flux condition was considered. Reynolds number was varied from 780 to 1987 while the frequency of pulsation ranged from 1 to 29.5 Hz. The results showed that the relative mean Nusselt number is strongly affected by pulsation frequency while it is slightly affected by Reynolds number. The results showed enhancements in the relative mean Nusselt number. In the frequency range of 1–4 Hz, an enhancement up to 30% (at Reynolds number of 1366 and pulsation frequency of 1.4 Hz) was obtained. In the frequency range of 17–25 Hz, an enhancement up to 9% (at Reynolds number of 1366 and pulsation frequency of 17.5 Hz) was indicated. The rate of enhancement of the relative mean Nusselt number decreased as pulsation frequency increased or as Reynolds number increased. A reduction in relative mean Nusselt number occurred outside these ranges of pulsation frequencies. A reduction in relative mean Nusselt number up to 40% for pulsation frequency range of 4.1–17 Hz and a reduction up to 20% for pulsation frequency range of 25–29.5 Hz for Reynolds numbers range of 780–1987 were considered. This reduction is directly proportional to the pulsation frequency. Empirical dimensionless equations have been developed for the relative mean Nusselt number that related to Reynolds number (750 < Re < 2000) and the dimensionless frequency (3<Ω<18) with about 10% rms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call