Abstract

PurposeThe purpose of this paper is to analyse the convective heat transfer of an unsteady pulsed, laminar, incompressible flow in axisymmetric tubes with periodic sections. The flow is supposed to be developing dynamically and thermally from the duct inlet. The wall is heated at constant and uniform temperature.Design/methodology/approachThe problem is written with classical homogeneous boundary conditions. We use a shift operator to impose non‐homogeneous boundary conditions. Consequently, this method introduces source terms in the Galerkin formulation. The momentum equations and the energy equation which govern this problem are numerically solved in space by a spectral Galerkin method especially oriented to this situation. A Crank‐Nicolson scheme permits the resolution in time.FindingsFrom the temperature field, the heat transfer phenomenon is presented, discussed and compared to those obtained in straight cylindrical pipes. This study showed the existence of zones of dead fluid that locally have a negative influence on heat transfer. Substantial modifications of the thermal convective heat transfer are highlighted at the entry and the minimum duct sections.Practical implicationsPulsated flows in axisymmetric geometries can be applied to medical industries, mechanical engineering and technological processes.Originality/valueOne of the original features of this study is the choice of Chebyshev polynomials basis in both axial and radial directions for spectral methods, combined with the use of a shift operator to satisfy non‐homogeneous boundary conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.