Abstract

Significant technological drivers motivate interest in the use of reaction sites embedded within nanometer-scale channels, and an important class of these structures is realized by an embedded annular nanoband electrode (EANE) in a cylindrical nanochannel. In this structure, the convective delivery of electroactive species to the nanoelectrode is tightly coupled to the electrochemical overpotential via electroosmotic flow. Simulation results indicate that EANE arrays significantly outperform comparable microband electrode/microchannel structures, producing higher conversion efficiencies at low Peclet number. The results of this in-depth analysis are useful in assessing possible implementation of the EANE geometry for a wide range of electrochemical targets within microscale total analysis systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.