Abstract

The problem of the oxy-fuel combustion flue gas condensation is the condensation of vapor in the presence of high concentration non-condensable gas. The vapor condensing at dew point temperature releases heat and diffuses on to the surface of the pipe through a non-condensable gas film. Thus it is treated as combined heat and mass transfer problem governed by mass, momentum and energy balance equations for the vaporgas mixture and diffusion equation for the vapor species. The flow of the falling condensate film is governed by the momentum and energy balance equations. The temperature at the gas-to-liquid interface, at which the condensation takes place, is estimated with the help of the heat balance and mass balance equations at the interface. The local values of the condensation Nusselt number, condensate Reynolds number, gasliquid interface temperature and pressure drop are estimated from the numerical results for different values of the system parameters at inlet, such as vapor component, temperature of vaporgas mixture, gas phase Reynolds number and total pressure. The thermodynamic calculations were made and analyzed using numerical calculation method under different conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.