Abstract

It is commonly assumed that the burning of ammonium nitrate–aluminum mixtures is much less prone to undergo a transition to explosion and detonation than similar mixtures based on ammonium perchlorate. However, this conclusion has been made for mixtures based on commercial-grade ammonium nitrate with large particles. In this study, the combustion of fine loose-packed mixtures of ammonium nitrate and aluminum in a closed-volume bomb has been examined. It has been shown that fine mixtures (ammonium nitrate with a particle size of less than 40 µm and an ASD-4 aluminum powder with spherical particles with a size of about 4 µm) undergo high-intensity combustion; in experiments with a stoichiometric mixture, explosions are observed. The explosions occur in the initial phase of convective combustion and lead to abrupt pressure pulsations with an amplitude of a few kilobars and to the destruction of the cup in which the sample is placed. The dynamics of development of the explosion has been analyzed in detail using numerical simulation. According to the results of experiments with varied parameters—the degree of dispersion of the ammonium nitrate powders, the aluminum content in the mixture, the length and diameter of the charge, and the level of pressure generated by the combustion of the igniter,—threshold conditions have been determined to separate the following modes: the absence of ignition, layer-by-layer combustion, or convective combustion with a transition into an explosion in experiments with a stoichiometric mixture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.