Abstract
The experiment detailed in this paper presents results obtained on the nucleation, growth and detachment of HFE-7100 confined vapour bubbles. Bubbles are created on an artificial nucleation site between two-dimensional plates under terrestrial and microgravity conditions. The experiments are performed by varying the shear flow by changing the convective mass flow rate, and varying the bubble nucleation rate by changing the heat flux supplied. The experiments are performed under normal (1 g) and reduced gravity (μg). The distance between the plates is equal to 1 mm. The results of these experiments are related to the detachment diameters of bubbles on the single artificial nucleation site and to the associated effects on the heat transfer by the confinement influence. The experimental device allows the observation of the flow using both visible video camera and infrared video camera. Here, we present the results obtained concerning the influence of gravity on the bubble detachment diameter and the images of 2D bubbles obtained in microgravity by means of an infrared camera. The following parameters: nucleation site surface temperature, bubble detachment diameter and bubble nucleation frequency evidence modifications due to microgravity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.