Abstract

Equilibration of inspired with lung residual gas was studied by a single-breath technique for varying breath-holding time with He, Ar, and SF6 as test gases. The ratio of end-expired (FE') to mean lung concentration after expiration (FL) was always below unity, indicating imperfect mixing of gas in the lung. The ratio of FL/FE' for all gases increased with tB, for any tB the ratio was smallest for SF6 and greatest for He. Similarly, Bohr dead space (VD) at any given tB was greatest for SF6 and smallest for He, with VD decreasing toward an asymptotic value common for all gases as tB increased. The results were analyzed quantitatively on a serial three-compartment model of the lung. Model analysis suggests that both diffusion and convection are effective in equilibrating test gases in the lung during breath holding. Further, stratified inhomogeneities in the absence of convective gas mixing in the alveolar space would seriously limit alveolar respiratory gas exchange; with convection, however, stratification is likely to impose only moderate constraints on resting gas exchange.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.