Abstract

The convective and absolute instability of a viscoelastic liquid jet falling under gravity is examined for axisymmetrical disturbances. We use the upper-convected Maxwell model to provide a mathematical description of the dynamics of a viscoelastic liquid jet. An asymptotic approach, based on the slenderness of the jet, is used to obtain the steady state solutions. By considering traveling wave modes, we derive a dispersion relation relating the frequency to the wavenumber of disturbances which is then solved numerically using the Newton-Raphson method. We show the effect of changing a number of dimensionless parameters, including the Froude number, on convective and absolute instability. In this work, we use a mapping technique developed by Kupfer, Bers, and Ram [“The cusp map in the complex-frequency plane for absolute instabilities,” Phys. Fluids 30, 3075–3082 (1987)] to find the cusp point in the complex frequency plane and its corresponding saddle point (the pinch point) in the complex wavenumber plane for absolute instability. The convective/absolute instability boundary is identified for various parameter regimes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.