Abstract
Abstract The mixed convection in a thin liquid film flow over a horizontal plate is investigated under finite Prandtl numbers. The gas–liquid interface is considered free, nondeformable and subject to surface tension gradients and convection, while gravity is assumed negligible. Therefore, thermocapillary instead of buoyancy effects appears due to the unstable temperature stratification induced by the internal heating generated by viscous dissipation. A linear and modal stability analysis of this model is then performed to identify its convective/absolute nature. This is achieved by solving the resulting differential eigenvalue problem with a shooting method. Longitudinal rolls are the most unstable at the onset of instability for most parametric conditions. Otherwise, transverse rolls are the first to become convectively unstable. Finally, longitudinal rolls are absolutely stable. A transition to absolute instability occurs through transverse rolls, but only within a limited region in parametric space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.