Abstract
Warm conveyor belts (WCBs) are important Lagrangian features in extratropical cyclones for the evolution of clouds, precipitation and flow dynamics. According to the classical concept, WCBs rise continuously from the boundary layer to the upper troposphere with ascent rates of less than 50 hPa/hr. Recent studies identified embedded convection in WCBs with ascent rates exceeding 50 hPa/hr, however, its significance and characteristics have not yet been analysed systematically. This study presents a detailed analysis of a frontal wave cyclone that occurred during the North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX) and investigates the occurrence of convection with ascent rates exceeding 100–200 hPa/hr embedded in the WCB. A set of diagnostics, based on the combination of Meteosat products, ECMWF data, and a convection‐permitting simulation, reveals consistently that convection occurs frequently in the warm sector of the investigated cyclone, in particular in the region of the WCB. These convective regions are characterized by increased surface precipitation, low values of convective available potential energy, and significant large‐scale forcing for ascent, indicating that this type of convection embedded in WCBs differs from classical air mass convection with higher vertical velocities. This is qualitatively confirmed by airborne radar observations of the considered cyclone with reflectivities hardly exceeding 30 dBZ. In the investigated WCB, the ascent is not continuous, but characterized by intermittent periods of very strong or even convective ascent and occasionally by short periods of descent. Together, these results provide a refined view on the concept of WCBs and its embedded convection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Quarterly Journal of the Royal Meteorological Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.