Abstract

The liquid metal battery is composed of two liquid metals with different electronegativity separated by molten salt. The three layers self-segregate based on density allowing for easy manufacturing and scaling. Lithium (Li) is one of the most widely researched anode materials, and when coupled with bismuth (Bi) cathodes, it gives a liquid metal battery that has an open circuit voltage of 0.9 V. Such a system has demonstrated impressive rate capabilities, ultra-long life cycle, and low energy cost. Here we present a two-dimensional physics-based model for Lithium-Bismuth liquid metal batteries. The model takes into account dynamical changes in the battery, including surface concentration and fluid flow. By solving the convection-diffusion equation in Bi electrodes, we are able to investigate the effect fluid flow on kinetic losses and concentration profiles in real time. The outcome of this work allows us to link electrochemistry and fluid dynamics in liquid metal batteries. Moreover, the model can also be used to guide future development of battery management systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.