Abstract

The radio frequency floating-zone growth of massive intermetallic single crystals is very often unsuccessful due to an unfavourable solid–liquid interface geometry enclosing concave fringes. This interface depends on the flow in the molten zone. A tailored magnetic two-phase stirrer system has been developed which enables the controlled influence on the melt flow ranging from intense inwards to outwards flows. Depending on the phase shift between the two induction coils, a transition from a double vortex structure to a single vortex structure is created at a preferable phase shift of 90°. This change in the flow field has a significant influence on the shape of the solid–liquid interface. Due to their attractive properties for high temperature applications such as high melting temperature, low density, high modulus and good oxidation resistance, the magnetic system was applied to the crystal growth of TiAl alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.