Abstract

Predictability limitations in quantitative precipitation forecasting arising from small-scale uncertainties in the initial conditions are investigated for Alpine river catchments, with particular consideration of their implications on hydrological runoff forecasting. To this end, convection-resolving ensembles of limited-area simulations are performed using a nonhydrostatic numerical weather prediction (NWP) model, and results are analysed in terms of catchment-averaged precipitation. The applied ensemble strategy uses slightly modified initial conditions representing observational uncertainties, but identical lateral boundary conditions representing a perfectly predictable synoptic-scale forcing. A total of four case studies is carried out for different synoptic conditions leading to heavy precipitation. Ensemble integrations of 12 members are analysed for 24-h forecasting periods, with particular attention paid to precipitation in the Po basin and in its sub-catchments in the Lago Maggiore area. The simulations exhibit a large variability in the predictability of precipitation amounts, both from case to case and from catchment to catchment. It is demonstrated for an episode of thermal convection, that the predictability may be very low even in large-scale catchments of ∼50,000 km 2. In more synoptically dominated cases, predictability limitations appear to be restricted to catchments smaller than ∼10,000 km 2, while in one case predictability is found to be high in catchments as small as 200 km 2. Overall, the simulations show that precipitation forecasts for alpine river catchments may on occasions be critically affected by predictability limitations, even though the NWP model and the synoptic-scale forcing are assumed to be prefect. It is demonstrated that a substantial fraction of the predictability limitations is due to the scattered and unpredictable occurrence of convective cells, but the presence of convective precipitation alone does not necessarily limit predictability. It is also shown that the predictability is systematically higher in mountainous catchments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.