Abstract
Abstract. Heavy precipitation is a challenging phenomenon with high impact on human lives and infrastructure, and thus a better modelling of its characteristics can improve understanding and simulation at climate timescales. The achievement of convection-permitting modelling (CPM) resolutions (Δx<4 km) has brought relevant advancements in its representation. However, further research is needed on how the very high resolution and switching-off of the convection parameterization affects the representation of processes related to heavy precipitation. In this study, we evaluate reanalysis-driven simulations for the greater Alpine area over the period 2000–2015 and assess the differences in representing heavy precipitation and other model variables in a CPM setup with a grid size of 3 km and a regional climate model (RCM) setup at 25 km resolution using the COSMO-CLM model. We validate our simulations against high-resolution observations (E-OBS (ENSEMBLES observations), HYRAS (Hydrometeorologische Rasterdatensätze), MSWEP (Multi-Source Weighted-Ensemble Precipitation), and UWYO (University of Wyoming)). The study presents a revisited version of the precipitation severity index (PSI) for severe event detection, which is a useful method to detect severe events and is flexible for prioritizing long-lasting events and episodes affecting typically drier areas. Furthermore, we use principal component analysis (PCA) to obtain the main modes of heavy precipitation variance and the associated synoptic weather types (WTs). The PCA showed that four WTs suffice to explain the synoptic situations associated with heavy precipitation in winter, due to stationary fronts and zonal flow regimes. Whereas in summer, five WTs are needed to classify the majority of heavy precipitation events. They are associated with upper-level elongated troughs over western Europe, sometimes evolving into cutoff lows, or with winter-like situations of strong zonal circulation. The results indicate that CPM represents higher precipitation intensities, better rank correlation, better hit rates for extremes detection, and an improved representation of heavy precipitation amount and structure for selected events compared to RCM. However, CPM overestimates grid point precipitation rates, which agrees with findings in past literature. CPM systematically represents more precipitation at the mountain tops. However, the RCMs may show large intensities in other regions. Integrated water vapour and equivalent potential temperature at 850 hPa are systematically larger in RCM compared to CPM in heavy precipitation situations (up to 2 mm and 3 K, respectively) due to wetter mid-level conditions and an intensified latent heat flux over the sea. At the ground level, CPM emits more latent heat than RCM over land (15 W m−2), bringing larger specific humidity north of the Alps (1 g kg−1) and higher CAPE (convective available potential energy) values (100 J kg−1). RCM, on the contrary simulates a wetter surface level over Italy and the Mediterranean Sea. Surface temperatures in RCM are up to 2 ∘C higher in RCM than in CPM. This causes outgoing longwave radiation to be larger in RCM compared to CPM over those areas (10 W m−2). Our analysis emphasizes the improvements of CPM for heavy precipitation modelling and highlights the differences against RCM that should be considered when using COSMO-CLM climate simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.